A microfluidic method to study demulsification kinetics.
نویسندگان
چکیده
We present the results of experiments studying droplet coalescence in a dense layer of emulsion droplets using microfluidic circuits. The microfluidic structure allows direct observation of collisions and coalescence events between oil droplets dispersed in water. The coalescence rate of a flowing hexadecane-in-water emulsion was measured as a function of the droplet velocity and droplet concentration from image sequences measured with a high-speed camera. A trajectory analysis of colliding droplet pairs allows evaluation of the film drainage profile and coalescence time t(c.) The coalescence times obtained for thousands of droplet pairs enable us to calculate coalescence time distributions for each set of experimental parameters, which are the mean droplet approach velocity (v(0)), the mean dispersed phase fraction (φ) and the mean hydraulic diameter of a droplet pair (d(p)). The expected value E(t(c)) of the coalescence time distributions scales as E(t(c)) is proportional to (v(0))(-0.105±0.043)(d(p))(0.562±0.287), but is independent of φ. We discuss the potential of the procedure for the prediction of emulsion stability in industrial applications.
منابع مشابه
Rapid, chemical-free breaking of microfluidic emulsions with a hand-held antistatic gun
Droplet microfluidics can form and process millions of picoliter droplets with speed and ease, allowing the execution of huge numbers of biological reactions for high-throughput studies. However, at the conclusion of most experiments, the emulsions must be broken to recover and analyze their contents. This is usually achieved with demulsifiers, like perfluorooctanol and chloroform, which can in...
متن کاملNumerical Study of Droplet Generation Process in a Microfluidic Flow Focusing
Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...
متن کاملPopulation Balance Equation Modeling of Crude Oil Demulsification Considering Demulsifier: Modification of Collision Frequency Function Based on Thermodynamic Model
A theoretical model is developed to consider the effect of demulsifier agent on demulsification of water-in-crude oil emulsion. A thermodynamic approach is considered to correlate the critical micelle concentration of a demulsifier to the collision frequency function in population balance equation (PBE). Based on the proposed correlation, the collision frequency function is modified to account ...
متن کاملAn electro-coalescence chip for effective emulsion breaking in droplet microfluidics.
Droplet-based microfluidics is increasingly used for biological applications, where the recovery of cells or particles after an experiment or assay is desirable. Here, we present an electro-demulsification chip which circumvents the use of harsh chemicals and multiple washing/centrifugation steps and offers a mild way for extracting cells and polymer particles into an aqueous phase from microfl...
متن کاملDesigning a dual-core photonic crystal fiber coupler by means of microfluidic infiltration
We report the results of our study on the role of microfluidic infiltration technique in improving the coupling characteristics of dual-core photonic crystal fiber (PCF) couplers. Using the finite element method (FEM), we evaluate the effective mode area, dispersion and coupling parameters of an infiltrated dual-core PCF. We use these parameters to design a compact and reconfigurable coupler by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2012